Automatic continuity notions and locally compact Polish groups

Phillip Wesolek (with F. Le Maître)

Université catholique de Louvain

When Topological Dynamics meets Model Theory

Phillip Wesolek (with F. Le Maître) (UCL)

To what extent does the algebraic structure of a Polish group *G* determine its topological structure?

To what extent does the algebraic structure of a Polish group *G* determine its topological structure?

• We study this question via considering abstract homomorphisms: $\psi : G \rightarrow H$ with H a Polish group.

To what extent does the algebraic structure of a Polish group *G* determine its topological structure?

- We study this question via considering abstract homomorphisms: $\psi : G \rightarrow H$ with H a Polish group.
- An abstract homomorphism ψ respects the algebraic structure *but* not necessarily the topological structure.

To what extent does the algebraic structure of a Polish group *G* determine its topological structure?

- We study this question via considering abstract homomorphisms: $\psi : G \rightarrow H$ with H a Polish group.
- An abstract homomorphism ψ respects the algebraic structure *but* not necessarily the topological structure.
- If the algebraic structure completely determines the topological structure, then any such ψ must be continuous.

To what extent does the algebraic structure of a Polish group *G* determine its topological structure?

- We study this question via considering abstract homomorphisms: $\psi : G \rightarrow H$ with H a Polish group.
- An abstract homomorphism ψ respects the algebraic structure *but not necessarily* the topological structure.
- If the algebraic structure completely determines the topological structure, then any such ψ must be continuous.
- By placing additional conditions on *H*, we can qualify to what extent the topology is determined.

Phillip Wesolek (with F. Le Maître) (UCL)

Automatic continuity

▲ ≣ ▶ ≣ ∽ ৭.৫
 29/6/2015 3 / 15

イロト イロト イヨト イヨト

G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.

< □ > < □ > < □ > < □ >

- G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.
- G has the invariant automatic continuity property if every homomorphism ψ : G → H with H a SIN Polish group is continuous.

- G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.
- G has the invariant automatic continuity property if every homomorphism ψ : G → H with H a SIN Polish group is continuous.
- G has the locally compact automatic continuity property if every homomorphism ψ : G → H with H a locally compact Polish group is continuous.

- G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.
- G has the invariant automatic continuity property if every homomorphism ψ : G → H with H a SIN Polish group is continuous.
- G has the locally compact automatic continuity property if every homomorphism ψ : G → H with H a locally compact Polish group is continuous.

- G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.
- G has the invariant automatic continuity property if every homomorphism ψ : G → H with H a SIN Polish group is continuous.
- G has the locally compact automatic continuity property if every homomorphism ψ : G → H with H a locally compact Polish group is continuous.

• Polish groups with ample generics (Kechris, Rosendal); e.g. S_{∞} , Aut(\mathcal{R}), Isom(\mathbb{QU}),...

- G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.
- G has the invariant automatic continuity property if every homomorphism ψ : G → H with H a SIN Polish group is continuous.
- G has the locally compact automatic continuity property if every homomorphism ψ : G → H with H a locally compact Polish group is continuous.

- Polish groups with ample generics (Kechris, Rosendal); e.g. S_∞, Aut(R), Isom(QU),...
- Sut($[0, 1], \lambda$) (Ben Yaacov, Berenstein, Melleray)

- G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.
- G has the invariant automatic continuity property if every homomorphism ψ : G → H with H a SIN Polish group is continuous.
- G has the locally compact automatic continuity property if every homomorphism ψ : G → H with H a locally compact Polish group is continuous.

- Polish groups with ample generics (Kechris, Rosendal); e.g. S_∞, Aut(R), Isom(QU),...
- **2** Aut($[0, 1], \lambda$) (Ben Yaacov, Berenstein, Melleray)
- Isom(U) (Sabok)

・ロト ・ 同ト ・ ヨト ・ ヨ

- G has the small index property (SIP) if every homomorphism
 ψ : G → H with H a non-archimedean Polish group is continuous.
- G has the invariant automatic continuity property if every homomorphism ψ : G → H with H a SIN Polish group is continuous.
- G has the locally compact automatic continuity property if every homomorphism ψ : G → H with H a locally compact Polish group is continuous.

- Polish groups with ample generics (Kechris, Rosendal); e.g. S_∞, Aut(R), Isom(QU),...
- 2 Aut($[0, 1], \lambda$) (Ben Yaacov, Berenstein, Melleray)
- Isom(U) (Sabok)

Remark

None of these examples are locally compact.

< ロ > < 同 > < 回 > < 回 >

Phillip Wesolek (with F. Le Maître) (UCL)

Automatic continuity

▲ ■ ▶ ■ シ ۹ G 29/6/2015 4 / 15

Image: A match a ma

Fact (Thomas)

Let $G = \prod_{n \in \mathbb{N}} S_n$ with each S_n a non-abelian finite simple group.

- 4 ∃ →

Fact (Thomas)

Let $G = \prod_{n \in \mathbb{N}} S_n$ with each S_n a non-abelian finite simple group. Then G has the SIP if and only if $(S_n)_{n \in \mathbb{N}}$ does not satisfy the Saxl/Wilson condition and does not satisfy the Malcev condition.

Fact (Thomas)

Let $G = \prod_{n \in \mathbb{N}} S_n$ with each S_n a non-abelian finite simple group. Then G has the SIP if and only if $(S_n)_{n \in \mathbb{N}}$ does not satisfy the Saxl/Wilson condition and does not satisfy the Malcev condition.

Negative results:

Fact (Thomas)

Let $G = \prod_{n \in \mathbb{N}} S_n$ with each S_n a non-abelian finite simple group. Then G has the SIP if and only if $(S_n)_{n \in \mathbb{N}}$ does not satisfy the Saxl/Wilson condition and does not satisfy the Malcev condition.

Negative results:

```
Theorem (Kallman)
```

Let $n \ge 1$ and F be a field of arbitrary characteristic such that $|F| \le 2^{\aleph_0}$. Then there is an injective homomorphism of $GL_n(F)$ into S_{∞} .

・ロト ・ 同ト ・ ヨト ・ ヨ

Fact (Thomas)

Let $G = \prod_{n \in \mathbb{N}} S_n$ with each S_n a non-abelian finite simple group. Then G has the SIP if and only if $(S_n)_{n \in \mathbb{N}}$ does not satisfy the Saxl/Wilson condition and does not satisfy the Malcev condition.

Negative results:

Theorem (Kallman)

Let $n \ge 1$ and F be a field of arbitrary characteristic such that $|F| \le 2^{\aleph_0}$. Then there is an injective homomorphism of $GL_n(F)$ into S_{∞} .

Corollary

Every non-trivial connected locally compact Polish group fails the SIP.

Profinite branch groups

Phillip Wesolek (with F. Le Maître) (UCL)

イロト イヨト イヨト

$$T_{\alpha} := \bigcup_{n \ge 0} \left(A_0 \times \cdots \times A_n \right).$$

▲掃▶ ▲ 臣▶

$$T_{\alpha} := \bigcup_{n\geq 0} (A_0 \times \cdots \times A_n).$$

Aut(*T_α*) is a compact non-archimedean Polish group - i.e. a profinite group.

- **→ → →**

$$T_{\alpha} := \bigcup_{n\geq 0} (A_0 \times \cdots \times A_n).$$

- Aut(*T_α*) is a compact non-archimedean Polish group i.e. a profinite group.
- For $G \leq \operatorname{Aut}(T_{\alpha})$ and $s \in T_{\alpha}$, the **rigid stabilizer** of *s* is

$$\operatorname{rist}_{G}(s) := \operatorname{Stab}_{G}(\{r \in T_{\alpha} \mid s \nsubseteq r\}).$$

.

$$T_{\alpha} := \bigcup_{n\geq 0} (A_0 \times \cdots \times A_n).$$

- Aut(*T_α*) is a compact non-archimedean Polish group i.e. a profinite group.
- For $G \leq \operatorname{Aut}(T_{\alpha})$ and $s \in T_{\alpha}$, the **rigid stabilizer** of *s* is

$$\operatorname{rist}_{G}(s) := \operatorname{Stab}_{G}(\{r \in T_{\alpha} \mid s \nsubseteq r\}).$$

The *n*-th level rigid stabilizer of G is $\operatorname{st}_G(n) := \langle \operatorname{rist}_G(s) | |s| = n \rangle$.

・ 何 ト ・ ヨ ト ・ ヨ

A profinite group *G* is said to be a **profinite branch group** if there is a tree T_{α} so that the following hold:

A profinite group *G* is said to be a **profinite branch group** if there is a tree T_{α} so that the following hold:

(i) *G* is isomorphic to a closed subgroup of $Aut(T_{\alpha})$.

A profinite group *G* is said to be a **profinite branch group** if there is a tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a closed subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .

A profinite group *G* is said to be a **profinite branch group** if there is a tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a closed subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .
- (iii) For each level *n*, the index $|G : st_G(n)|$ is finite.

A profinite group *G* is said to be a **profinite branch group** if there is a tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a closed subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .
- (iii) For each level *n*, the index $|G : st_G(n)|$ is finite.

Definition

A profinite group is called **strongly just infinite** (sji) if every non-trivial normal subgroup is open.

- ∢ ∃ ▶

A profinite group *G* is said to be a **profinite branch group** if there is a tree T_{α} so that the following hold:

- (i) *G* is isomorphic to a closed subgroup of $Aut(T_{\alpha})$.
- (ii) *G* acts transitively on each level of T_{α} .
- (iii) For each level *n*, the index $|G : st_G(n)|$ is finite.

Definition

A profinite group is called **strongly just infinite** (sji) if every non-trivial normal subgroup is open.

Example

The inverse limit $W(Alt(5)) := \varprojlim ((Alt(5), [4]) \wr \cdots \wr (Alt(5), [4]))$ is a sji profinite branch group.

イロン イヨン イヨン イヨ

Automatic continuity results

Image: A math a math

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

< 🗇 🕨 < 🖻 🕨

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

Suppose G ≤ Aut(T) is a sji profinite branch group and H ≤ G has countable index.

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

Suppose G ≤ Aut(T) is a sji profinite branch group and H ≤ G has countable index. H is dense in some st_G(n).

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

Suppose G ≤ Aut(T) is a sji profinite branch group and H ≤ G has countable index. H is dense in some st_G(n). Put H
 = ∩^k_{i=1} g_iHg_i⁻¹ for g_i right coset representatives for st_G(n) in G.

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

- Suppose G ≤ Aut(T) is a sji profinite branch group and H ≤ G has countable index. H is dense in some st_G(n). Put H
 = ∩^k_{i=1} g_iHg_i⁻¹ for g_i right coset representatives for st_G(n) in G.
- A diagonal argument and a commutator trick show rist_G(s)' ≤ H̃ for some s ∈ T.

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

- Suppose G ≤ Aut(T) is a sji profinite branch group and H ≤ G has countable index. H is dense in some st_G(n). Put H
 = ∩^k_{i=1} g_iHg_i⁻¹ for g_i right coset representatives for st_G(n) in G.
- A diagonal argument and a commutator trick show rist_G(s)' ≤ H̃ for some s ∈ T.
- Conjugating \tilde{H} by hg_i for $h \in H$ and $1 \le i \le k$ gives $st_{|s|}(G)' \le H$.

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

- Suppose G ≤ Aut(T) is a sji profinite branch group and H ≤ G has countable index. H is dense in some st_G(n). Put H
 = ∩^k_{i=1} g_iHg_i⁻¹ for g_i right coset representatives for st_G(n) in G.
- A diagonal argument and a commutator trick show rist_G(s)' ≤ H̃ for some s ∈ T.
- Conjugating \tilde{H} by hg_i for $h \in H$ and $1 \le i \le k$ gives $st_{|s|}(G)' \le H$.
- Since G is sji, the commutator subgroup $st_{|s|}(G)'$ is open.

< 🗇 🕨 < 🖃 🕨

Suppose G is a profinite branch group. Then G is strongly just infinite if and only if G has the SIP.

Sketch of proof.

- Suppose G ≤ Aut(T) is a sji profinite branch group and H ≤ G has countable index. H is dense in some st_G(n). Put H
 = ∩^k_{i=1} g_iHg_i⁻¹ for g_i right coset representatives for st_G(n) in G.
- A diagonal argument and a commutator trick show rist_G(s)' ≤ H̃ for some s ∈ T.
- Conjugating \tilde{H} by hg_i for $h \in H$ and $1 \le i \le k$ gives $st_{|s|}(G)' \le H$.
- Since G is sji, the commutator subgroup $st_{|s|}(G)'$ is open.

Fact (Borel; Kallman)

 $PSL_3(\mathbb{Z}_p)$ is a strongly just infinite profinite group but fails the SIP.

・ロト ・ 四ト ・ ヨト ・ ヨト

A sequence of symmetric subsets $(B_i)_{i \in \mathbb{N}}$ in a Polish group *G* is called a **Bergman sequence** if $G = \bigcup_{i \in \mathbb{N}} B_i$ and $B_i B_i \subseteq B_{i+1}$ for all *i*.

・ロト ・ 同ト ・ ヨト ・ ヨ

・ロト ・ 同ト ・ ヨト ・ ヨ

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then the following are equivalent:

G is strongly just infinite.

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then the following are equivalent:

- G is strongly just infinite.
- Q G has the Bergman property.

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then the following are equivalent:

- G is strongly just infinite.
- **2** *G* has the Bergman property.
- G has uncountable cofinality.

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then the following are equivalent:

- G is strongly just infinite.
- If a construction of the set o
- G has uncountable cofinality.

Corollary

If *G* is a strongly just infinite profinite branch group, then *G* admits exactly two locally compact group topologies:

Theorem (Le Maître, W.)

Suppose G is a profinite branch group. Then the following are equivalent:

- G is strongly just infinite.
- If a construction of the set o
- G has uncountable cofinality.

Corollary

If G is a strongly just infinite profinite branch group, then G admits exactly two locally compact group topologies: the discrete topology and the usual topology.

< ロ > < 同 > < 回 > < 回 >

Phillip Wesolek (with F. Le Maître) (UCL)

Automatic continuity

▶ < 불 ▶ 볼 ∽ Q (29/6/2015 10 / 15

◆□▶ ◆圖▶ ◆理≯ ◆理≯

 A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.

< □ > < □ > < □ > < □ >

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP,

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP, the invariant automatic continuity property,

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property.

・ロト ・ 同ト ・ ヨト ・ ヨ

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property.

Corollary

There is a non-discrete topologically simple locally compact Polish group with

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property.

Corollary

There is a non-discrete topologically simple locally compact Polish group with the SIP,

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property.

Corollary

There is a non-discrete topologically simple locally compact Polish group with the SIP, the invariant automatic continuity property,

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property.

Corollary

There is a non-discrete topologically simple locally compact Polish group with the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property.

- A profinite branch group G ≤ Aut(T) has uniform commutator widths if there is C ≥ 1 so that cw(rist_G(s)) ≤ C for all s ∈ T.
- A profinite branch group is wreath-like if rist_G(s) is a branch group for T^s.

If G is a strongly just infinite profinite branch group which is wreath-like and has uniform commutator widths, then G has the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property.

Corollary

There is a non-discrete topologically simple locally compact Polish group with the SIP, the invariant automatic continuity property, and the locally compact automatic continuity property. E.g. the Burger-Mozes universal groups $U(A_n)^+$ for $n \ge 6$.

イロト イヨト イヨト イヨト

 Suppose (*F_i*, *X_i*)_{*i*∈ℕ} is a sequence of non-trivial finite perfect permutation groups so that *F_i* acts transitively and faithfully on *X_i*.

< 47 ▶

→ ∃ →

• Suppose $(F_i, X_i)_{i \in \mathbb{N}}$ is a sequence of non-trivial finite perfect permutation groups so that F_i acts transitively and faithfully on X_i . Suppose further there is $C \ge 1$ so that $cw(F_i) \le C$ for all *i*.

.

• Suppose $(F_i, X_i)_{i \in \mathbb{N}}$ is a sequence of non-trivial finite perfect permutation groups so that F_i acts transitively and faithfully on X_i . Suppose further there is $C \ge 1$ so that $cw(F_i) \le C$ for all *i*. (Any sequence of non-abelian finite simple groups suffices.)

- Suppose $(F_i, X_i)_{i \in \mathbb{N}}$ is a sequence of non-trivial finite perfect permutation groups so that F_i acts transitively and faithfully on X_i . Suppose further there is $C \ge 1$ so that $cw(F_i) \le C$ for all *i*. (Any sequence of non-abelian finite simple groups suffices.)
- We may form $W_k := (F_k, X_k) \wr \cdots \wr (F_0, X_0).$

イロト イポト イヨト イヨト

- Suppose $(F_i, X_i)_{i \in \mathbb{N}}$ is a sequence of non-trivial finite perfect permutation groups so that F_i acts transitively and faithfully on X_i . Suppose further there is $C \ge 1$ so that $cw(F_i) \le C$ for all *i*. (Any sequence of non-abelian finite simple groups suffices.)
- We may form $W_k := (F_k, X_k) \wr \cdots \wr (F_0, X_0)$. The $(W_k)_{k \ge 0}$ forms an inverse system, so

イロト イポト イヨト イヨト

- Suppose $(F_i, X_i)_{i \in \mathbb{N}}$ is a sequence of non-trivial finite perfect permutation groups so that F_i acts transitively and faithfully on X_i . Suppose further there is $C \ge 1$ so that $cw(F_i) \le C$ for all *i*. (Any sequence of non-abelian finite simple groups suffices.)
- We may form $W_k := (F_k, X_k) \wr \cdots \wr (F_0, X_0)$. The $(W_k)_{k \ge 0}$ forms an inverse system, so we may take the inverse limit $\lim_{k \to 0} W_k$.

- Suppose $(F_i, X_i)_{i \in \mathbb{N}}$ is a sequence of non-trivial finite perfect permutation groups so that F_i acts transitively and faithfully on X_i . Suppose further there is $C \ge 1$ so that $cw(F_i) \le C$ for all *i*. (Any sequence of non-abelian finite simple groups suffices.)
- We may form $W_k := (F_k, X_k) \wr \cdots \wr (F_0, X_0)$. The $(W_k)_{k \ge 0}$ forms an inverse system, so we may take the inverse limit $\lim_{k \to \infty} W_k$.
- $\lim_{k \to k} W_k$ is a profinite branch group.

イロト イポト イヨト イヨト 三臣

- Suppose $(F_i, X_i)_{i \in \mathbb{N}}$ is a sequence of non-trivial finite perfect permutation groups so that F_i acts transitively and faithfully on X_i . Suppose further there is $C \ge 1$ so that $cw(F_i) \le C$ for all *i*. (Any sequence of non-abelian finite simple groups suffices.)
- We may form $W_k := (F_k, X_k) \wr \cdots \wr (F_0, X_0)$. The $(W_k)_{k \ge 0}$ forms an inverse system, so we may take the inverse limit $\lim_{k \to \infty} W_k$.
- $\lim_{X_i} W_k$ is a profinite branch group. It acts on the tree $T_{(X_i)_{i \in \mathbb{N}}} = \bigcup_{n \ge 0} (X_n \times \cdots \times X_0).$

イロト イポト イヨト イヨト 三臣

- Suppose (*F_i*, *X_i*)_{*i*∈ℕ} is a sequence of non-trivial finite perfect permutation groups so that *F_i* acts transitively and faithfully on *X_i*. Suppose further there is *C* ≥ 1 so that cw(*F_i*) ≤ *C* for all *i*. (Any sequence of non-abelian finite simple groups suffices.)
- We may form W_k := (F_k, X_k) ≥····≥ (F₀, X₀). The (W_k)_{k≥0} forms an inverse system, so we may take the inverse limit lim_k W_k.
- $\lim_{X_i} W_k$ is a profinite branch group. It acts on the tree $\overline{T}_{(X_i)_{i \in \mathbb{N}}} = \bigcup_{n \ge 0} (X_n \times \cdots \times X_0).$
- $\lim_{k \to \infty} W_k$ is sji, is wreath-like, and has uniform commutator widths, so all of our results apply.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Remarks and Questions

A D > A B > A B > A

Do strongly just infinite profinite branch groups have the automatic continuity property?

- Do strongly just infinite profinite branch groups have the automatic continuity property?
- What about those that also have bounded commutator widths and are wreath-like?

- Do strongly just infinite profinite branch groups have the automatic continuity property?
- What about those that also have bounded commutator widths and are wreath-like?
- N. Nikolov has an example of a sji profinite branch group without bounded commutator widths.

- Do strongly just infinite profinite branch groups have the automatic continuity property?
- What about those that also have bounded commutator widths and are wreath-like?
- N. Nikolov has an example of a sji profinite branch group without bounded commutator widths. Does this example fail the automatic continuity property?

• Strongly just infinite \Rightarrow SIP. (E.g. $PSL_n(\mathbb{Z}_p)$)

• • • • • • • • • • • • •

- Strongly just infinite \Rightarrow SIP. (E.g. $PSL_n(\mathbb{Z}_p)$)
- The Bergman property \Rightarrow SIP. (E.g. Alt(5)^N; Cornulier)

- Strongly just infinite \Rightarrow SIP. (E.g. $PSL_n(\mathbb{Z}_p)$)
- The Bergman property \Rightarrow SIP. (E.g. Alt(5)^{\mathbb{N}}; Cornulier)

Question

If G is a strongly just infinite profinite Polish group with the Bergman property, then does G have the SIP?

Thank you

・ロト ・日下 ・ ヨト ・