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Vague Question
To what extent does the algebraic structure of a Polish group G
determine its topological structure?

• We study this question via considering abstract homomorphisms:
ψ : G→ H with H a Polish group.
• An abstract homomorphism ψ respects the algebraic structure but

not necessarily the topological structure.
• If the algebraic structure completely determines the topological

structure, then any such ψ must be continuous.
• By placing additional conditions on H, we can qualify to what extent

the topology is determined.
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• G has the small index property (SIP) if every homomorphism
ψ : G→ H with H a non-archimedean Polish group is continuous.
• G has the invariant automatic continuity property if every

homomorphism ψ : G→ H with H a SIN Polish group is continuous.
• G has the locally compact automatic continuity property if every

homomorphism ψ : G→ H with H a locally compact Polish group is
continuous.

Many Polish groups have all of these properties and more:
1 Polish groups with ample generics (Kechris, Rosendal); e.g. S∞,

Aut(R), Isom(QU),...
2 Aut([0,1], λ) (Ben Yaacov, Berenstein, Melleray)
3 Isom(U) (Sabok)

Remark
None of these examples are locally compact.
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In the non-discrete locally compact case, much less is known.

Fact (Thomas)
Let G =

∏
n∈N Sn with each Sn a non-abelian finite simple group. Then

G has the SIP if and only if (Sn)n∈N does not satisfy the Saxl/Wilson
condition and does not satisfy the Malcev condition.

Negative results:

Theorem (Kallman)
Let n ≥ 1 and F be a field of arbitrary characteristic such that
|F | ≤ 2ℵ0 . Then there is an injective homomorphism of GLn(F ) into
S∞.

Corollary
Every non-trivial connected locally compact Polish group fails the SIP.
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Profinite branch groups

Let α := (Ai)i∈N be a sequence of finite sets of naturals (assume
|Ai | ≥ 2) and form the tree

Tα :=
⋃
n≥0

(A0 × · · · × An) .

• Aut(Tα) is a compact non-archimedean Polish group - i.e. a profinite
group.
• For G ≤ Aut(Tα) and s ∈ Tα, the rigid stabilizer of s is

ristG(s) := StabG({r ∈ Tα | s * r}).

The n-th level rigid stabilizer of G is stG(n) := 〈ristG(s) | |s| = n〉.
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Definition
A profinite group G is said to be a profinite branch group if there is a
tree Tα so that the following hold:

(i) G is isomorphic to a closed subgroup of Aut(Tα).
(ii) G acts transitively on each level of Tα.
(iii) For each level n, the index |G : stG(n)| is finite.

Definition
A profinite group is called strongly just infinite (sji) if every non-trivial
normal subgroup is open.

Example
The inverse limit W (Alt(5)) := lim←− ((Alt(5), [4]) o · · · o (Alt(5), [4])) is a
sji profinite branch group.
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Automatic continuity results
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Theorem (Le Maı̂tre, W.)
Suppose G is a profinite branch group. Then G is strongly just infinite if
and only if G has the SIP.

Sketch of proof.
• Suppose G ≤ Aut(T ) is a sji profinite branch group and H ≤ G has

countable index. H is dense in some stG(n). Put H̃ =
⋂k

i=1 giHg−1
i

for gi right coset representatives for stG(n) in G.
• A diagonal argument and a commutator trick show ristG(s)′ ≤ H̃ for

some s ∈ T .
• Conjugating H̃ by hgi for h ∈ H and 1 ≤ i ≤ k gives st|s|(G)′ ≤ H.
• Since G is sji, the commutator subgroup st|s|(G)′ is open.

Fact (Borel; Kallman)
PSL3(Zp) is a strongly just infinite profinite group but fails the SIP.
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A sequence of symmetric subsets (Bi)i∈N in a Polish group G is called
a Bergman sequence if G =

⋃
i∈N Bi and BiBi ⊆ Bi+1 for all i .

A
Polish group G has the Bergman property if every Bergman
sequence eventually stabilizes at G.

Theorem (Le Maı̂tre, W.)
Suppose G is a profinite branch group. Then the following are
equivalent:

1 G is strongly just infinite.
2 G has the Bergman property.
3 G has uncountable cofinality.

Corollary
If G is a strongly just infinite profinite branch group, then G admits
exactly two locally compact group topologies: the discrete topology
and the usual topology.
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• A profinite branch group G ≤ Aut(T ) has uniform commutator
widths if there is C ≥ 1 so that cw(ristG(s)) ≤ C for all s ∈ T .
• A profinite branch group is wreath-like if ristG(s) is a branch group

for T s.

Theorem (Le Maı̂tre, W.)
If G is a strongly just infinite profinite branch group which is wreath-like
and has uniform commutator widths, then G has the SIP, the invariant
automatic continuity property, and the locally compact automatic
continuity property.

Corollary
There is a non-discrete topologically simple locally compact Polish
group with the SIP, the invariant automatic continuity property, and the
locally compact automatic continuity property. E.g. the Burger-Mozes
universal groups U(An)

+ for n ≥ 6.
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Examples

• Suppose (Fi ,Xi)i∈N is a sequence of non-trivial finite perfect
permutation groups so that Fi acts transitively and faithfully on Xi .

Suppose further there is C ≥ 1 so that cw(Fi) ≤ C for all i . (Any
sequence of non-abelian finite simple groups suffices.)
• We may form Wk := (Fk ,Xk ) o · · · o (F0,X0). The (Wk )k>0 forms an

inverse system, so we may take the inverse limit lim←−k
Wk .

• lim←−k
Wk is a profinite branch group. It acts on the tree

T(Xi )i∈N =
⋃

n≥0(Xn × · · · × X0).
• lim←−k

Wk is sji, is wreath-like, and has uniform commutator widths, so
all of our results apply.
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Remarks and Questions
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Questions
1 Do strongly just infinite profinite branch groups have the automatic

continuity property?

2 What about those that also have bounded commutator widths and
are wreath-like?

3 N. Nikolov has an example of a sji profinite branch group without
bounded commutator widths. Does this example fail the automatic
continuity property?
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In the class of profinite Polish groups, we have the following
non-implications:

• Strongly just infinite ; SIP. (E.g. PSLn(Zp))
• The Bergman property ; SIP. (E.g. Alt(5)N; Cornulier )

Question
If G is a strongly just infinite profinite Polish group with the Bergman
property, then does G have the SIP?
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Thank you
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